Hierarchical Kernel Fitting for Fingerprint Classification and Alignment

نویسندگان

  • Anil K. Jain
  • Silviu Minut
چکیده

Fingerprint classification consists of labeling a fingerprint impression as one of several major types of fingerprints: arch, left loop, right loop, whorl, etc. The problem of fingerprint matching amounts to deciding whether or not two impressions were produced by the same finger. We propose a model based method for fingerprint classification which only uses the flow field, avoiding the non-trivial computation of the thinned ridges and minutia points. For each class, a fingerprint kernel is defined, which models the shape of fingerprints in that class. The classification is then achieved by finding the kernel that best fits the flow field of the given fingerprint. We obtain a classification accuracy of 91.25% on the NIST 4 database. We also show how the kernel fitting procedure can be used for fingerprint alignment.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Automatic Fingerprint Classification Algorithm

Manual fingerprint classification algorithms are very time consuming, and usually not accurate. Fast and accurate fingerprint classification is essential to each AFIS (Automatic Fingerprint Identification System). This paper investigates a fingerprint classification algorithm that reduces the complexity and costs associated with the fingerprint identification procedure. A new structural algorit...

متن کامل

An Automatic Fingerprint Classification Algorithm

Manual fingerprint classification algorithms are very time consuming, and usually not accurate. Fast and accurate fingerprint classification is essential to each AFIS (Automatic Fingerprint Identification System). This paper investigates a fingerprint classification algorithm that reduces the complexity and costs associated with the fingerprint identification procedure. A new structural algorit...

متن کامل

Hierarchical Directed Acyclic Graph Kernel: Methods for Structured Natural Language Data

This paper proposes the “Hierarchical Directed Acyclic Graph (HDAG) Kernel” for structured natural language data. The HDAG Kernel directly accepts several levels of both chunks and their relations, and then efficiently computes the weighed sum of the number of common attribute sequences of the HDAGs. We applied the proposed method to question classification and sentence alignment tasks to evalu...

متن کامل

A Robust Strucutural Fingerprint Restoration

Fast and accurate ridge detection in fingerprints is essential to each AFIS (Automatic Fingerprint Identification System). Smudged furrows and cut ridges in the image of a finger print are major problems in any AFIS. This paper investigates a new online ridge detection method that reduces the complexity and costs associated with the fingerprint identification procedure. The noise in fingerprint...

متن کامل

An Atomistic Fingerprint Algorithm for Learning Ab Initio Molecular Force Fields

Molecular fingerprints, i.e., feature vectors describing atomistic neighborhood configurations, is an important abstraction and a key ingredient for data-driven modeling of potential energy surface and interatomic force. In this paper, we present the density-encoded canonically aligned fingerprint algorithm, which is robust and efficient, for fitting per-atom scalar and vector quantities. The f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002